Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Environ Pollut ; 350: 123948, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38614423

RESUMEN

The aim of this study is to investigate the adverse effects of benzophenones (BPs) on the intestinal tract of mice and the potential mechanism. F1-generation ICR mice were exposed to BPs (benzophenone-1, benzophenone-2, and benzophenone-3) by breastfeeding from birth until weaning, and by drinking water after weaning until maturity. The offspring mice were executed on postnatal day 56, then their distal colons were sampled. AB-PAS staining, HE staining, immunofluorescence, Transmission Electron Microscope, immunohistochemistry, Western Blot and RT-qPCR were used to study the effects of BPs exposure on the colonic tissues of offspring mice. The results showed that colonic microvilli appeared significantly deficient in the high-dose group, and the expression of tight junction markers Zo-1 and Occludin was significantly down-regulated and the number of goblet cells and secretions were reduced in all dose groups, and the expression of secretory cell markers MUC2 and KI67 were decreased, as well as the expression of intestinal stem cell markers Lgr5 and Bmi1, suggesting that BPs exposure caused disruption of intestinal barrier and imbalance in the composition of the intestinal stem cell pool. Besides, the expression of cellular inflammatory factors such as macrophage marker F4/80 and tumor necrosis factor TNF-α was elevated in the colonic tissues of all dose groups, and the inflammatory infiltration was observed, which means the exposure of BPs caused inflammatory effects in the intestinal tract of F1-generation mice. In addition, the contents of Notch/Wnt signaling pathway-related genes, such as Dll-4, Notch1, Hes1, Ctnnb1and Sfrp2 were significantly decreased in each high-dose group (P < 0.05), suggesting that BPs may inhibit the regulation of Notch/Wnt signaling pathway. In conclusion, exposure to BPs was able to imbalance colonic homeostasis, disrupt the intestinal barrier, and trigger inflammation in the offspring mice, which might be realized through interfering with the Notch/Wnt signaling pathway.

2.
PLoS Genet ; 20(1): e1011037, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206971

RESUMEN

Explicitly sharing individual level data in genomics studies has many merits comparing to sharing summary statistics, including more strict QCs, common statistical analyses, relative identification and improved statistical power in GWAS, but it is hampered by privacy or ethical constraints. In this study, we developed encG-reg, a regression approach that can detect relatives of various degrees based on encrypted genomic data, which is immune of ethical constraints. The encryption properties of encG-reg are based on the random matrix theory by masking the original genotypic matrix without sacrificing precision of individual-level genotype data. We established a connection between the dimension of a random matrix, which masked genotype matrices, and the required precision of a study for encrypted genotype data. encG-reg has false positive and false negative rates equivalent to sharing original individual level data, and is computationally efficient when searching relatives. We split the UK Biobank into their respective centers, and then encrypted the genotype data. We observed that the relatives estimated using encG-reg was equivalently accurate with the estimation by KING, which is a widely used software but requires original genotype data. In a more complex application, we launched a finely devised multi-center collaboration across 5 research institutes in China, covering 9 cohorts of 54,092 GWAS samples. encG-reg again identified true relatives existing across the cohorts with even different ethnic backgrounds and genotypic qualities. Our study clearly demonstrates that encrypted genomic data can be used for data sharing without loss of information or data sharing barrier.


Asunto(s)
Estudio de Asociación del Genoma Completo , Privacidad , Humanos , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Programas Informáticos , Genómica
3.
Toxics ; 11(9)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37755775

RESUMEN

This study aims to explore the molecular mechanism of tetrandrine (Tet) in alleviating pulmonary inflammation and fibrosis induced by silica (SiO2) from the perspective of autophagy. C57BL/6J mice were selected as experimental animals, and SiO2 was exposed by intranasal instillation. Tet was intervened by oral gavage. The mice were euthanized on the 7th and 42nd day of SiO2 exposure, and lung tissues were collected for histopathological, molecular biological, immunological, and transmission electron microscopy analysis. The results showed that SiO2 exposure could lead to significant lung inflammation and fibrosis, while Tet could significantly reduce SiO2 exposure-induced lung inflammation and fibrosis. Molecular mechanism research indicated that, compared with SiO2 expose group, Tet intervention could significantly reduce the expression levels of inflammatory cytokines and fibrosis markers (TNF-α, IL-1ß, MCP-1, TGF-ß1, HYP, Col-I, and Fn), and regulate the expression of key molecules ATG7, microtubule-associated protein 1 light chain 3B (LC3B), and P62 in the autophagy pathway to improve the blocking of autophagic flux, promote the recovery of autophagic lysosomal system function, and inhibit apoptosis. In summary, Tet can alleviate silica-induced lung inflammation and fibrosis, which may be achieved by regulating the expression of key molecules in the autophagy process and associated apoptotic pathway.

4.
Heliyon ; 9(6): e16649, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37292267

RESUMEN

Objective: This study was aimed to explore the role of AhR in the neurotoxicity of adult zebrafish induced by three typical bisphenol compounds (BPA, BPS, TBBPA) at environmentally relevant doses. Methods: The adult zebrafish were randomly divided into solvent control group (DMSO) and AhR inhibitor CH223191 (CH) group (0.05 µmol/L), bisphenol exposure groups (10, 100, 1000 nmol/L) and combined exposure groups (0.05 µmol/L CH and 1000 nmol/L bisphenol compounds). Each tank contained 8 fish (4 male and 4 female), and two parallel tanks were set synchronously. After 30 days of exposure, zebrafish were put on ice plate for anesthesia, weighed and measured for body length, and dissected for brain tissue. The gene expression was detected by RT-qPCR, and the activities of antioxidant enzymes were detected by commercial kits. SPSS 26.0 was used to analyze the data. Additionally, GO, KEGG and principal component analysis (PCA) were carried out. Results: Compared with the solvent control group, there were no significant differences in body weight and length among the exposed groups. In general, exposure to bisphenol compounds could affect the expression of Ahr2 and AhR target genes (cyp1a1, cyp1a2, and cyp1c1), key genes of neural function (elavl3, gfap, mbp, syn2a, gap43, Zn5, shha, and ache), oxidative stress related genes (nrf2, gpx1a, gstp1/gstp1.2, gstp2/gstp1.1, sod1, sod2, and cat), and the activities of antioxidant enzymes (SOD, CAT and GSH-Px/GPX) in zebrafish brain tissue to some extent. Compared with the groups exposed to bisphenols alone, CH could antagonize the above interference effects caused by bisphenols to some extent. Therefore, the toxic effects of BPA, BPS and TBBPA might be produced through similar mechanisms. Conclusion: Environmentally related doses of bisphenols (BPA, BPS, TBBPA) could disturb the expression of key molecules of oxidative stress and neural function through activating the AhR signaling pathway, and ultimately lead to neurotoxicity.

5.
Cytokine ; 166: 156191, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37002970

RESUMEN

OBJECTIVE: This study was aimed to screen and identify miRNAs that could regulate human CTGF gene and downstream cascade reaction Rac1/MLK3/JNK/AP-1/Collagen I by bioinformatics and experimental means. METHODS: TargetScan and Tarbase were used to predict miRNAs that may have regulatory effects on human CTGF gene. The dual-luciferase reporter gene assay was employed to verify the results obtained in bioinformatics. Human alveolar basal epithelial A549 cells were exposed to silica (SiO2) culture medium for 24 h to establish an in vitro model of pulmonary fibrosis, and bleomycin (BLM) of 100 ng/mL was used as a positive control. The miRNA and mRNA expression levels were determined by RT-qPCR, and the protein levels were measured by western blot in hsa-miR-379-3p overexpression group or not. RESULTS: A total of 9 differentially expressed miRNAs that might regulate the human CTGF gene were predicted. Hsa-miR-379-3p and hsa-miR-411-3p were selected for the subsequent experiments. The results of the dual-luciferase reporter assay showed that hsa-miR-379-3p could bind to CTGF, but hsa-miR-411-3p could not. Compared with the control group, SiO2 exposure (25 and 50 µg/mL) could significantly reduce the expression level of hsa-miR-379-3p in A549 cells. SiO2 exposure (50 µg/mL) could significantly increase the mRNA expression levels of CTGF, Collagen I, Rac1, MLK3, JNK, AP1, and VIM in A549 cells, while CDH1 level was significantly decreased. Compared with SiO2 + NC group, the mRNA expression levels of CTGF, Collagen I, Rac1, MLK3, JNK, AP1, and VIM were significantly decreased, and CDH1 level was significantly higher when hsa-miR-379-3p was overexpressed. At the same time, overexpression of hsa-miR-379-3p improved the protein levels of CTGF, Collagen I, c-Jun and phospho-c-Jun, JNK1 and phospho-JNK1 significantly compared with SiO2 + NC group. CONCLUSION: Hsa-miR-379-3p was demonstrated for the first time that could directly target and down-regulate human CTGF gene, and further affect the expression levels of key genes and proteins in Rac1/MLK3/JNK/AP-1/Collagen I cascade reaction.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , MicroARNs , Humanos , Células A549 , Colágeno/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , MicroARNs/genética , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , ARN Mensajero , Dióxido de Silicio/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
6.
Ecotoxicol Environ Saf ; 255: 114812, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36963186

RESUMEN

PM2.5 is a type of particulate matter with an aerodynamic diameter smaller than 2.5 µm, and exposure to PM2.5 can adversely damage human health. PM2.5 may impair health through oxidative stress, inflammatory reactions, immune function alterations and chromosome or DNA damage. Through increasing in-depth studies, researchers have found that noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs), circular RNAs (circRNAs) as well as long noncoding RNAs (lncRNAs), might play significant roles in PM2.5-related human diseases via some of the abovementioned mechanisms. Therefore, in this review, we mainly discuss the regulatory function of ncRNAs altered by PM2.5 in human diseases and summarize the potential molecular mechanisms. The findings reveal that these ncRNAs might induce or promote diseases via inflammation, the oxidative stress response, cell autophagy, apoptosis, cell junction damage, altered cell proliferation, malignant cell transformation, disruption of synaptic function and abnormalities in the differentiation and status of immune cells. Moreover, according to a bioinformatics analysis, the altered expression of potential genes caused by these ncRNAs might be related to the development of some human diseases. Furthermore, some ncRNAs, including lncRNAs, miRNAs and circRNAs, or processes in which they are involved may be used as biomarkers for relevant diseases and potential targets to prevent these diseases. Additionally, we performed a meta-analysis to identify more promising diagnostic ncRNAs as biomarkers for related diseases.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Circular/genética , MicroARNs/genética , MicroARNs/metabolismo , Inflamación , Biomarcadores , Material Particulado/toxicidad
7.
Toxics ; 11(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36851050

RESUMEN

This study aimed to investigate the effects of perfluorooctanesulfonic acid (PFOS) exposure on glucose-stimulated insulin secretion (GSIS) of rat insulinoma (INS-1) cells and the potential protective effects of procyanidins (PC). The effects of PFOS and/or PC on GSIS of INS-1 cells were investigated after 48 h of exposure (protein level: insulin; gene level: glucose transporter 2 (Glut2), glucokinase (Gck), and insulin). Subsequently, the effects of exposure on the intracellular reactive oxygen species (ROS) activity were measured. Compared to the control group, PFOS exposure (12.5, 25, and 50 µM) for 48 h had no significant effect on the viability of INS-1 cells. PFOS exposure (50 µM) could reduce the level of insulin secretion and reduce the relative mRNA expression levels of Glut2, Gck, and insulin. It is worth noting that PC could partially reverse the damaging effect caused by PFOS. Significantly, there was an increase in ROS after exposure to PFOS and a decline after PC intervention. PFOS could affect the normal physiological function of GSIS in INS-1 cells. PC, a plant natural product, could effectively alleviate the damage caused by PFOS by inhibiting ROS activity.

8.
Aquat Toxicol ; 254: 106371, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36529091

RESUMEN

Benzophenone-type UV filters (BPs) are ubiquitous contaminants in aquatic environments, possibly posing ecological risks to aquatic populations. So far, little is known about the potential adverse effects of BPs on amphibians. Given their potential estrogenic property, we investigated the detrimental effects of the commonly used BPs, BP-3, BP-2, and BP-1, on testis development in amphibians using Xenopus laevis as a model species. Following exposure to 10, 100, 1000 nM BP-3, BP-2, or BP-1 from stages 45/46 to 52, tadpoles presented morphological abnormal testes, characterized by reduced gonomere size and testis area, coupled with suppressed cell proliferation. Meanwhile, the downregulation of testis-biased gene expression and the upregulation of ovary-biased gene expression were observed in BPs-treated testes. Moreover, the estrogen receptor (ER) antagonist ICI 182780 significantly antagonized ovary-biased gene upregulation caused by BPs, suggesting that the effects of BPs on testis differentiation could be mediated by ER, at least partially. Of note, the effects of BPs were not concentration-dependent, but the lowest concentration generally exerted significant effects. Altogether, these observations indicate that the three BPs inhibited testis differentiation and exerted feminizing effects. Importantly, when BP-2 exposure was extended to two months post-metamorphosis, testes of froglets were generally less-developed, with relatively fewer spermatocytes, more spermatogonia, and poorly formed seminiferous tubules. Considering the fact that the lowest concentration (10 nM) of BPs in this study are detectable in aquatic environments, we conclude that BP-3, BP-2, and BP-1, even at environmentally relevant concentrations, can retard testis differentiation at pre-metamorphic stages and cause testis dysgenesis after metamorphosis in the amphibian X. laevis. Our findings suggest that ubiquitous BPs in aquatic environments could pose a potential risk to amphibians.


Asunto(s)
Testículo , Contaminantes Químicos del Agua , Masculino , Animales , Femenino , Xenopus laevis , Contaminantes Químicos del Agua/toxicidad , Ovario , Benzofenonas/toxicidad
9.
Heliyon ; 8(11): e11751, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36468138

RESUMEN

Objective: This study was aimed to investigate the role of non-neuronal cholinergic system (NNCS) in the early stage response of epithelial-mesenchymal transformation (EMT) related markers in human lung adenocarcinoma A549 cells induced by coal particles. Methods: A549 cells were exposed to different concentrations of GBW11110K, GBW11126D and exogenous acetylcholinesterase (AChE) (the exposure doses were determined according to the results of CCK-8 experiment, and the doses that had no significant effects on cell viability were selected) for 24 h. After exposure, the indexes of oxidative stress (SOD and MDA), inflammatory factors (IL-6 and TNF-α), EMT marker proteins (E-cadherin and vimentin), AChE enzymatic activity and mRNA expression levels of different types of acetylcholine receptors (CHRM3, CHRM5, CHRNA5, CHRNA7, CHRNA9 and CHRNB2) were determined. Results: GBW11110K and GBW11126D exposure could lead to the following injury effects: the levels of oxidative stress and inflammatory factors changed to a certain extent (SOD decreased gradually, while MDA, IL-6 and TNF-α increased). The protein level of E-cadherin decreased while the vimentin level increased (P < 0.05), suggesting the occurrence of EMT. The AChE enzymatic activity decreased gradually. The expression of acetylcholine receptor mRNA changed as follows (GBW11110K/GBW11126D: CHRM3 (↑↑), CHRM5 (↓↓), CHRNA5 (↓↓), CHRNA7 (↓↓), CHRNA9 (- ↑), CHRNB2 (- -). The addition of exogenous AChE recombinant protein could antagonize the damage effects caused by the coal particles to a certain extent. Conclusion: The coal particle exposure could induce the change of oxidative stress response, inflammatory response and EMT related markers, down-regulate the AChE enzymatic activity, and interfere the mRNA expression levels of AChRs in A549 cells. The addition of exogenous AChE recombinant protein could reverse the above effects to a certain extent.

10.
Front Mol Neurosci ; 15: 1004221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438184

RESUMEN

Central nervous system (CNS) disease is a general term for a series of complex and diverse diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), CNS tumors, stroke, epilepsy, and amyotrophic lateral sclerosis (ALS). Interneuron and neuron-glia cells communicate with each other through their homeostatic microenvironment. Exosomes in the microenvironment have crucial impacts on interneuron and neuron-glia cells by transferring their contents, such as proteins, lipids, and ncRNAs, constituting a novel form of cell-to-cell interaction and communication. Exosomal noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and PIWI-interacting RNAs (piRNAs), regulate physiological functions and maintain CNS homeostasis. Exosomes are regarded as extracellular messengers that transfer ncRNAs between neurons and body fluids due to their ability to cross the blood-brain barrier. This review aims to summarize the current understanding of exosomal ncRNAs in CNS diseases, including prospective diagnostic biomarkers, pathological regulators, therapeutic strategies and clinical applications. We also provide an all-sided discussion of the comparison with some similar CNS diseases and the main limitations and challenges for exosomal ncRNAs in clinical applications.

11.
Heliyon ; 8(8): e10201, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36046534

RESUMEN

Aims: This study aims to screen the potential targets of tetrandrine (Tet) against pulmonary fibrosis (PF) based on network pharmacological analysis, molecular docking and experimental verification. Main methods: The network pharmacology methods were employed to predict targets, construct Tet-PF-intersection target-pathway networks, and screen the candidate targets. The molecular docking was performed using AutoDockTools1.5.6. TGF-ß1-induced human lung adenocarcinoma A549 cells were used as an in vitro experimental verification model, taking dexamethasone (Dex) as the positive control, to verify the effects of Tet on the mRNA expression of the candidate targets. Key findings: Six candidate targets were predicted based on network pharmacology and molecular docking, namely PIK3CA, PDPK1, RAC1, PTK2, KDR, and RPS6KB1. The experimental verification results showed that Dex and Tet presented quite different pharmacological effects. Specifically, compared with the model group, both Dex and Tet (5 µΜ) significantly increased the mRNA expression of PIK3CA and KDR (P < 0.001). Dex up-regulated the mRNA expression of PDPK1 and RAC1, while Tet (1.25 µΜ) down-regulated (P < 0.001). Dex up-regulated the mRNA expression of PTK2, but Tet had no effect. Dex down-regulated RPS6KB1 mRNA expression, while Tet (5 µΜ) up-regulated (P < 0.01). Significance: Combined with the results of theoretical calculation and experimental verification, and considering the roles of these targets in the pathogenesis of PF, Tet might antagonize PF by acting on PDPK1 and RAC1. The results of this study will provide scientific reference for the prevention and clinical diagnosis and treatment of PF.

12.
Proteomics ; 22(22): e2200120, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35856475

RESUMEN

Protein kinases are a crucial component of signaling pathways involved in a wide range of cellular responses, including growth, proliferation, differentiation, and migration. Systematic investigation of protein kinases is critical to better understand phosphorylation-mediated signaling pathways and may provide insights into the development of potential therapeutic drug targets. Here we perform a systems-level analysis of the mouse kinome by analyzing multi-omics data. We used bulk and single-cell transcriptomic data from the C57BL/6J mouse strain to define tissue- and cell-type-specific expression of protein kinases, followed by investigating variations in sequence and expression between C57BL/6J and DBA/2J strains. We then profiled a deep brain phosphoproteome from C57BL/6J and DBA/2J strains as well as their reciprocal hybrids to infer the activity of the mouse kinome. Finally, we performed phenome-wide association analysis using the BXD recombinant inbred (RI) mice (a cross between C57BL/6J and DBA/2J strains) to identify any associations between variants in protein kinases and phenotypes. Collectively, our study provides a comprehensive analysis of the mouse kinome by investigating genetic sequence variation, tissue-specific expression patterns, and associations with downstream phenotypes.


Asunto(s)
Proteínas Quinasas , Ratones , Animales , Ratones Endogámicos DBA , Ratones Endogámicos C57BL , Fenotipo , Proteínas Quinasas/genética , Especificidad de la Especie
13.
Ecotoxicol Environ Saf ; 236: 113453, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35390692

RESUMEN

There is growing concern about adverse effects of bisphenol A alternatives including bisphenol B (BPB) due to their estrogenic activity. However, limited data are available concerning the influences of BPB on male reproductive development in vertebrates, especially in amphibians, which are believed to be susceptible to estrogenic chemicals. The present study investigated the effects of 10, 100 and 1000 nM BPB (2.42, 24.2 and 242 µg/L) on testis development in Xenopus laevis, a model amphibian species for studying gonadal feminization. We found that exposure to BPB from stages 45/46 to 52 resulted in down-regulation of testis-biased gene expression and up-regulation of ovary-biased gene and vitellogenin (vtgb1) expression in gonad-mesonephros complexes (GMCs) of tadpoles at stage 52, coupled with suppressed cell proliferation in testes and reduced gonadal metameres, resembling the effects of 17ß-estradiol. Moreover, an estrogen receptor (ER) antagonist ICI 182780 antagonized BPB-caused up-regulation of ovary-biased gene and vtgb1 expression to some degree, indicating that the effects of BPB on X. laevis testis differentiation could be partly mediated by ER. All observations demonstrate that early exposure to BPB inhibited testis differentiation and exerted certain feminizing effects during gonadal differentiation. When exposure was extended to post-metamorphosis, testes exhibited histological and morphological abnormalities including segmented, discontinuous and fragmented shapes, besides altered sex-dimorphic gene expression. Notably, most of BPB-caused alterations were not concentration-dependent, but the lowest concentration indeed exerted significant effects. Overall, our study for the first time reveals that low concentrations of BPB can disrupt testis differentiation partly due to its estrogenic activity and subsequently cause testicular dysgenesis after metamorphosis, highlighting its reproductive risk to amphibians and other vertebrates including humans. Our finding also implies that estrogenic chemicals-caused testis differentiation inhibition at tadpole stages could predict later testicular dysgenesis after metamorphosis, meaning a possibility of early detection of abnormal testis development caused by estrogenic chemicals.


Asunto(s)
Compuestos de Bencidrilo , Fenoles , Receptores de Estrógenos , Testículo , Animales , Compuestos de Bencidrilo/farmacología , Femenino , Masculino , Fenoles/farmacología , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Xenopus laevis
14.
BMC Genomics ; 22(1): 875, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863093

RESUMEN

BACKGROUND: Natural variation in protein expression is common in all organisms and contributes to phenotypic differences among individuals. While variation in gene expression at the transcript level has been extensively investigated, the genetic mechanisms underlying variation in protein expression have lagged considerably behind. Here we investigate genetic architecture of protein expression by profiling a deep mouse brain proteome of two inbred strains, C57BL/6 J (B6) and DBA/2 J (D2), and their reciprocal F1 hybrids using two-dimensional liquid chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) technology. RESULTS: By comparing protein expression levels in the four mouse strains, we observed 329 statistically significant differentially expressed proteins between the two parental strains and characterized the genetic basis of protein expression. We further applied a proteogenomic approach to detect variant peptides and define protein allele-specific expression (pASE), identifying 33 variant peptides with cis-effects and 17 variant peptides showing trans-effects. Comparison of regulation at transcript and protein levels show a significant divergence. CONCLUSIONS: The results provide a comprehensive analysis of genetic architecture of protein expression and the contribution of cis- and trans-acting regulatory differences to protein expression.


Asunto(s)
Encéfalo , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA
15.
Mol Ecol Resour ; 21(5): 1732-1744, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33665976

RESUMEN

Detecting genetic regions under selection in structured populations is of great importance in ecology, evolutionary biology and breeding programmes. We recently proposed EigenGWAS, an unsupervised genomic scanning approach that is similar to F ST but does not require grouping information of the population, for detection of genomic regions under selection. The original EigenGWAS is designed for the random mating population, and here we extend its use to inbred populations. We also show in theory and simulation that eigenvalues, the previous corrector for genetic drift in EigenGWAS, are overcorrected for genetic drift, and the genomic inflation factor is a better option for this adjustment. Applying the updated algorithm, we introduce the new EigenGWAS online platform with highly efficient core implementation. Our online computational tool accepts plink data in a standard binary format that can be easily converted from the original sequencing data, provides the users with graphical results via the R-Shiny user-friendly interface. We applied the proposed method and tool to various data sets, and biologically interpretable results as well as caveats that may lead to an unsatisfactory outcome are given. The EigenGWAS online platform is available at www.eigengwas.com, and can be localized and scaled up via R (recommended) or docker.


Asunto(s)
Genoma , Internet , Selección Genética , Programas Informáticos , Algoritmos , Visualización de Datos , Flujo Genético , Genómica
16.
Front Genet ; 12: 612045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33747041

RESUMEN

The estimation of heritability has been an important question in statistical genetics. Due to the clear mathematical properties, the modified Haseman-Elston regression has been found a bridge that connects and develops various parallel heritability estimation methods. With the increasing sample size, estimating heritability for biobank-scale data poses a challenge for statistical computation, in particular that the calculation of the genetic relationship matrix is a huge challenge in statistical computation. Using the Haseman-Elston framework, in this study we explicitly analyzed the mathematical structure of the key term tr( K T K ), the trace of high-order term of the genetic relationship matrix, a component involved in the estimation procedure. In this study, we proposed two estimators, which can estimate tr( K T K ) with greatly reduced sampling variance compared to the existing method under the same computational complexity. We applied this method to 81 traits in UK Biobank data and compared the chromosome-wise partition heritability with the whole-genome heritability, also as an approach for testing polygenicity.

17.
Genet Epidemiol ; 45(2): 171-189, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32996630

RESUMEN

Genes, including those with transgenerational effects, work in concert with behavioral, environmental, and social factors via complex biological networks to determine human health. Understanding complex relationships between causal factors underlying human health is an essential step towards deciphering biological mechanisms. We propose a new analytical framework to investigate the interactions between maternal and offspring genetic variants or their surrogate single nucleotide polymorphisms (SNPs) and environmental factors using family-based hybrid study design. The proposed approach can analyze diverse genetic and environmental factors and accommodate samples from a variety of family units, including case/control-parental triads, and case/control-parental dyads, while minimizing potential bias introduced by population admixture. Comprehensive simulations demonstrated that our innovative approach outperformed the log-linear approach, the best available method for case-control family data. The proposed approach had greater statistical power and was capable to unbiasedly estimate the maternal and child genetic effects and the effects of environmental factors, while controlling the Type I error rate against population stratification. Using our newly developed approach, we analyzed the associations between maternal and fetal SNPs and obstructive and conotruncal heart defects, with adjustment for demographic and lifestyle factors and dietary supplements. Fourteen and 11 fetal SNPs were associated with obstructive and conotruncal heart defects, respectively. Twenty-seven and 17 maternal SNPs were associated with obstructive and conotruncal heart defects, respectively. In addition, maternal body mass index was a significant risk factor for obstructive defects. The proposed approach is a powerful tool for interrogating the etiological mechanism underlying complex traits.


Asunto(s)
Cardiopatías Congénitas , Modelos Genéticos , Estudios de Casos y Controles , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo
18.
Hortic Res ; 7: 145, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922817

RESUMEN

Brassica oleracea comprises various economically important vegetables and presents extremely diverse morphological variations. They provide a rich source of nutrition for human health and have been used as a model system for studying polyploidization. Transposable elements (TEs) account for nearly 40% of the B. oleracea genome and contribute greatly to genetic diversity and genome evolution. Although the proliferation of TEs has led to a large expansion of the B. oleracea genome, little is known about the population dynamics and evolutionary activity of TEs. A comprehensive mobilome profile of 45,737 TE loci was obtained from resequencing data from 121 diverse accessions across nine B. oleracea morphotypes. Approximately 70% (32,195) of the loci showed insertion polymorphisms between or within morphotypes. In particular, up to 1221 loci were differentially fixed among morphotypes. Further analysis revealed that the distribution of the population frequency of TE loci was highly variable across different TE superfamilies and families, implying a diverse expansion history during host genome evolution. These findings provide better insight into the evolutionary dynamics and genetic diversity of B. oleracea genomes and will potentially serve as a valuable resource for molecular markers and association studies between TE-based genomic variations and morphotype-specific phenotypic differentiation.

19.
DNA Res ; 27(2)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32324848

RESUMEN

Tobacco (Nicotiana tabacum) is one of the most widely cultivated commercial non-food crops with significant social and economic impacts. Here we profiled transcriptome and metabolome from 54 tobacco samples (2-3 replicates; n = 151 in total) collected from three varieties (i.e. genetic factor), three locations (i.e. environmental factor), and six developmental stages (i.e. developmental process). We identified 3,405 differentially expressed (DE) genes (DEGs) and 371 DE metabolites, respectively. We used quantitative real-time PCR to validate 20 DEGs, and confirmed 18/20 (90%) DEGs between three locations and 16/20 (80%) with the same trend across developmental stages. We then constructed nine co-expression gene modules and four co-expression metabolite modules , and defined seven de novo regulatory networks, including nicotine- and carotenoid-related regulatory networks. A novel two-way Pearson correlation approach was further proposed to integrate co-expression gene and metabolite modules to identify joint gene-metabolite relations. Finally, we further integrated DE and network results to prioritize genes by its functional importance and identified a top-ranked novel gene, LOC107773232, as a potential regulator involved in the carotenoid metabolism pathway. Thus, the results and systems-biology approaches provide a new avenue to understand the molecular mechanisms underlying complex genetic and environmental perturbations in tobacco.


Asunto(s)
Variación Biológica Poblacional , Redes Reguladoras de Genes , Variación Genética , Metaboloma , Nicotiana/genética , Transcriptoma , Carotenoides/metabolismo , Genes de Plantas , Genómica/métodos , Nicotiana/metabolismo
20.
Sci Total Environ ; 723: 137952, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32213405

RESUMEN

Epidemiological and animal studies indicate that increased exposure to bisphenol A (BPA) induces various human cardiovascular diseases (CVDs), including myocardial infarction, arrhythmias, dilated cardiomyopathy, atherosclerosis, and hypertension. Bisphenol S (BPS), an alternative to BPA, is increasingly present in various consumer products and human bodies worldwide. Recently, emerging evidence has shown that BPS might be related to cardiovascular disorders. In this review, we present striking evidence of the correlation between BPA exposure and various CVDs, and show that a nonmonotonic dose-response curve (NMDRC) was common in studies of the CV effects of BPA in vivo. The CV impairment induced by low doses of BPA should be highlighted, especially during developmental exposure or during coexposure with other risk factors. Furthermore, we explored the possible underlying mechanisms of these effects-particularly nuclear receptor signaling, ion channels, and epigenetic mechanisms-and the possible participation of lipid metabolism, oxidative stress and cell signaling. As the potential risks of BPA exposure in humans are still noteworthy, studies of BPA in CVDs should be strengthened, especially with respect to the mechanisms, prevention and treatment. Moreover, the potential CV risk of BPS reported by in vivo studies calls for immediate epidemiological investigations and animal studies to reveal the relationships of BPS and other BPA alternatives with human CVDs.


Asunto(s)
Compuestos de Bencidrilo , Fenoles , Animales , Humanos , Sulfonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...